Electrodynamics of the vanadium oxides VO2 and V2O3
نویسندگان
چکیده
The optical and infrared properties of films of vanadium dioxide VO2 and vanadium sesquioxide V2O3 have been investigated via ellipsometry and near-normal incidence reflectance measurements from far infrared to ultraviolet frequencies. Significant changes occur in the optical conductivity of both VO2 and V2O3 across the metal-insulator transitions at least up to and possibly beyond 6 eV. We argue that such changes in optical conductivity and electronic spectral weight over a broad frequency range are evidence of the important role of electronic correlations to the metal-insulator transitions in both of these vanadium oxides. We observe a sharp optical transition with possible final state exciton effects in the insulating phase of VO2. This sharp optical transition occurs between narrow a1g bands that arise from the quasi-one-dimensional chains of vanadium dimers. Electronic correlations in the metallic phases of both VO2 and V2O3 lead to reduction of the kinetic energy of the charge carriers compared to band theory values, with paramagnetic metallic V2O3 showing evidence of stronger correlations compared to rutile metallic VO2.
منابع مشابه
The vanadium Magnéli phases V
To compare the metal-insulator transitions (MITs) of VO2 and V2O3 we analyze the relations between the structural and electronic properties of the vanadium Magnéli phases. These materials set up the homologous series VnO2n−1 (3 ≤ n ≤ 9) and have crystal structures comprising typical dioxide-like and sesquioxidelike regions. As the MITs of the vanadium Magnéli phases are accompanied by structura...
متن کاملUltrahigh‐Power Pseudocapacitors Based on Ordered Porous Heterostructures of Electron‐Correlated Oxides
Nanostructured transition-metal oxides can store high-density energy in fast surface redox reactions, but their poor conductivity causes remarkable reductions in the energy storage of most pseudocapacitors at high power delivery (fast charge/discharge rates). Here it is shown that electron-correlated oxide hybrid electrodes made of nanocrystalline vanadium sesquioxide and manganese dioxide with...
متن کاملNanocolumnar Crystalline Vanadium Oxide-Molybdenum Oxide Antireflective Smart Thin Films with Superior Nanomechanical Properties
Vanadium oxide-molybdenum oxide (VO-MO) thin (21-475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V2O5, V2O3 and VO2 along with MoO3. Reversible or smart transition was found to occur just above the room temperature i.e., ...
متن کاملVanadium Oxide Nanostructures for Lithium Battery Applications
Lithium and Lithium-ion batteries for portable electronic devices and hybrid electric vehicles have gained great importance for energy storage today. However, how to prepare cathode materials with higher energy density, high potentials, and longer cycle life is still a challenge. Compared with commercial LiCoO2, vanadium oxides have higher specific capacity and interesting layered structures, w...
متن کاملSynthesis of vanadium dioxide thin films on conducting oxides and metal–insulator transition characteristics
We report on growth and physical properties of vanadium dioxide (VO2) films on model conducting oxide underlayers (Nb-doped SrTiO3 and RuO2 buffered TiO2 single crystals). The VO2 films, synthesized by rf sputtering, are highly textured as seen from X-ray diffraction. The VO2 film grown on Nb doped SrTiO3 shows over two orders of magnitude metal–insulator transition, while VO2 film on RuO2 buff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008